Term: Analogy

Quote: The formula of analogy is as follows:

S', S'', S''' are taken at random from such a class that their characters at random are such as P', P'', P''''.

t is P', P'', and P''''.

S', S'', S''' are q;

\[\therefore t \text{ is } q.\]

Such an argument is double. It combines the two following:

1

S', S'', S''' are taken as being P', P'', P''''.

S', S'', S''' are q.

\[\therefore (\text{By induction}) \ P', P'', P'''' \text{ is } q.\]

t is P', P'', P''''.

\[\therefore (\text{Deductively}) \ t \text{ is } q.\]

2

S', S'', S''' are, for instance, P', P'', P''''.

t is P', P'', P''''.

\[\therefore (\text{By hypothesis}) \ t \text{ has the common characters of } S', S'', S'''.\]

S', S'', S''' are q.

\[\therefore (\text{Deductively}) \ t \text{ is } q.\]

Owing to its double character, analogy is very strong with only a moderate number of instances.

References: W 2:46-47; CP 2.513

Date of Quote: 1867

URL: http://www.commens.org/dictionary/entry/quote-natural-classification-arguments