Term: Analogy

Quote: The formula of analogy is as follows:

\[S', S'', S''', t \]

are taken at random from such a class that their characters at random are such as \(P', P'', P'''. \)
\(t \) is \(P', P'', P'''. \)
\(S', S'', S''' \) are \(q; \).
\(\therefore t \) is \(q. \)

Such an argument is double. It combines the two following:

1

\[S', S'', S''' \] are taken as being \(P', P'', P'''. \)
\(S', S'', S''' \) are \(q; \).
\(\therefore (\text{By induction}) \ P', P'', P'''. \) is \(q. \)
\(t \) is \(P', P'', P'''. \)
\(\therefore (\text{Deductively}) \ t \) is \(q. \)

2

\[S', S'', S''' \] are, for instance, \(P', P'', P'''. \)
\(t \) is \(P', P'', P'''. \)
\(\therefore (\text{By hypothesis}) \ t \) has the common characters of \(S', S'', S'''. \)
\(S', S'', S''' \) are \(q; \).
\(\therefore (\text{Deductively}) \ t \) is \(q. \)

Owing to its double character, analogy is very strong with only a moderate number of instances.

References: W 2:46-47; CP 2.513

Date of Quote: 1867

URL: http://www.commens.org/dictionary/entry/quote-natural-classification-arguments