
Term: Analogy

Quote: The formula of analogy is as follows:-

\(S', S'', S''' \) are taken at random from such a class that their characters at random are such as \(P', P'', P''' \).

\(t \) is \(P', P'', P''' \).

\(S', S'', S''' \) are \(q \);
\(. . . \) \(t \) is \(q \).

Such an argument is double. It combines the two following:-

1

\(S', S'', S''' \) are taken as being \(P', P'', P''' \).

\(S', S'', S''' \) are \(q \).
\(. . . \) (By induction) \(P', P'', P''' \) is \(q \).

\(t \) is \(P', P'', P''' \).
\(. . . \) (Deductively) \(t \) is \(q \).

2

\(S', S'', S''' \) are, for instance, \(P', P'', P''' \).

\(t \) is \(P', P'', P''' \);
\(. . . \) (By hypothesis) \(t \) has the common characters of \(S', S'', S''' \).

\(S', S'', S''' \) are \(q \).
\(. . . \) (Deductively) \(t \) is \(q \).

Owing to its double character, analogy is very strong with only a moderate number of instances.

References: W 2:46-47; CP 2.513

Date of Quote: 1867

URL: http://www.commens.org/dictionary/entry/quote-natural-classification-arguments

Commens: Digital Companion to C. S. Peirce (http://www.commens.org)